> e ebjbj di\di\9[p-tt 8"8"8"D|"|"|""#|"x%$&''',",,xxxxxxx$l{"~>5x8",+,,,5x ''Jx000,Z '8"'x0,x00.q!^w'e.3.|s@w`x0x't`~.l`~w`~8"w4,,0,,,,,5x5x0,,,x,,,,`~,,,,,,,,,t>: Careers in Transportation Curriculum Project
Teaching Guide
For
UAV / BlimpDuino Study:
Mathematical Regression
Revised 2018
Table of Contents
Acknowledgements
Teaching Activity
Overview of Module
Module Focus (Pathways, Related Occupations, Recommended Subject Areas)
TDL Cluster Knowledge and Skills and Performance Elements Addressed
Common Core Standards Addressed
Objectives
Measurement Criteria
Teacher Notes
Time Required to Complete Module
Support Materials and Resources Necessary for Completion of Module
Lesson Outline
Handout 1: Quiz and Teachers Guide
Handout 2: Procedure Notes for Mathematical Regression of Payload vs. Speed Teachers Guide with Instructions
(Optional) Handout 3: Mathematical Regression Career Connection
Teacher Assessment Materials
Final Evaluation which includes measurement criteria
Quiz 2
Teachers Guide to Quiz
Grading Score Sheet
Appendix
Acknowledgements
Business/Industry/Government Partner(s)
Oklahoma Aerospace Institute, James Grimsley
Developers
Charles Koutahi and Julia Utley
Francis Tuttle Technology Center
Oklahoma City, Oklahoma
HYPERLINK "mailto:Ckoutahi@francistuttle.edu"Ckoutahi@francistuttle.edu and HYPERLINK "mailto:jutley@francistuttle.edu"jutley@francistuttle.edu
Art Waldenville, Moore Norman Technology Center
Norman, Oklahoma
HYPERLINK "mailto:awaldenville@mntechnology.com"awaldenville@mntechnology.com
Reviewed and Comments/Materials provided by Julie Kuznicki, Adlai Stevenson High School, Sterling Heights, Michigan
Module Summary
Overview of Module
This module focuses on determining the rate of gas depletion in order to develop a mathematical model. This module is most appropriate for students in grades 10-12.
Primary Career Cluster
Transportation, Distribution and Logistics
Science, Engineering, Technology and Math (STEM)
Primary Career Pathway: Transportation Operations, Facility and Mobile Equipment Maintenance, Engineering and Technology, Science and Mathematics
Related Occupations: Aerospace Engineer, Aeronautical Engineer, Mechanical Engineer, Electronics Technician, Computer Programmer, Computer Engineer, Systems Engineering/Technician, Robotics/UAV, Math & Science Educator, Pilot
Recommended Subject Areas: Physical Science, Physics, Algebra, Engineering
Technical Education, Principles of Engineering
Cluster Knowledge and Skills and Performance Elements
Academic Foundations
ESS01.03.06 Construct charts/tables/graphs from functions and data.
ESS01.04.02 Apply scientific methods in qualitative and quantitative analysis, data gathering, direct and indirect observation, predictions and problem identification.
Communications
ESS02.01.02 Demonstrate use of content, technical concepts and vocabulary when analyzing information and following directions.
ESS02.09.01 Create tables, charts and figures to support written and oral communications.
Problem-Solving and Critical Thinking
ESS03.01.05 Evaluate ideas, proposals and solutions to problems.
ESS03.01.06 Use structured problem-solving methods when developing proposals and solutions.
ESS03.04.02 Gather technical information and data using a variety of resources.
ESS03.04.04 Evaluate information and data to determine value to research objectives.
Information Technology Applications
ESS04.07.02 Perform calculations and analyses on data using a spreadsheet.
Leadership and Teamwork
ESS07.03.01 Work with others to achieve objectives in a timely manner.
Next Generation Science Standards
HS-PS2-1. Analyze data to support the claim that Newtons second law of motion describes the mathematical relationship among the net force on a macroscopic object, its mass, and its acceleration.
HS-PS2.A: Forces and Motion
HS-PS2.B: Types of Interactions
HS-ESS3.A: Natural Resources
HS-ETS1-1. Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.
Common Core Standards
Mathematics
A-CED.1. Create equations and inequalities in one variable and use them to solve problems.
N-Q 1. Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.
A-REI 1. Explain each step in solving an equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method.
A-REI.3. Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.
S-ID.6. Represent data on two quantitative variables on a scatter plot, and describe how the variables are related.
S-ID.8. Compute (using technology) and interpret the correlation coefficient of a linear fit.
S-ID.3. Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers). (Covered in optional activity.)
Language Arts
(All Language Arts standards apply to the memo part of the optional activity.)
WHST.11-12.4. Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
WHST.11-12.10. Write routinely over extended time frames (time for reflection and revision) and shorter time frames (a single sitting or a day or two) for a range of discipline-specific tasks, purposes, and audiences.
Objectives
What I Want Students to KnowWhat I Want Students to be Able to DoMathematical modeling
Regression
The significance of r and r2
Interpolation and extrapolation
Graphing functions
Use a graphing calculator (TI-83 Plus or TI-84) to plot data points
Calculate the equation of a line when given two points
Calculate average speed
Calculate equations of lines, slopes and y-intercept form
Measurement Criteria
Students will be assessed on this problem-based dynamics study on the following criteria:
Calculate speed over a fixed distance using r=d/t
Plot data points (payload vs. top speed) by hand
Plot data points (payload vs. top speed) using a graphing calculator
Find the best fit line using an approximation (by hand) and a graphing calculator
Find non-linear models (quadratic, exponential) to represent the data
Discuss the accuracy of the models based on r and r2
Find expected speed calculation of a point through interpolation and extrapolation
Accuracy of (speed) calculations analytically vs. experimentally
Conclusion of results
Teacher Notes
It will make grading easier if the students use the same pool of data to develop calculator-generated linear regression models.
Hand out Quiz 1 as homework the day before starting this activity.
The first 45-minute class period will be needed to collect Quiz 1, discuss the specifics of the assignment, collect the data and begin the activity. In the second class period the students will be guided through the steps of using the graphing calculators to develop a linear regression. The third class period can be used to examine the results, discuss the accuracy of the students work and take Quiz 2.
Time required to Complete Problem (Estimated): Three 45-minute classes total.
Module Support Materials Summary
Materials needed:
BlimpDuino (see directions for ordering below)
Stopwatch
Measuring tape or meter stick
10 small weights per team (100 grams each)
Paper (lined and graph)
Pencils
TI-83 Plus or TI-84 graphing calculator with a USB connection or access to Microsoft Excel
Computer/projector with the capability of showing the operation and results of the graphing calculator
Websites:
Information regarding the BlimpDuino can be found at HYPERLINK "http://diydrones.com/profiles/blog/show?id=705844%3ABlogPost%3A44817"http://diydrones.com/profiles/blog/show?id=705844%3ABlogPost%3A44817. If you cannot access this specific webpage, go to HYPERLINK "http://dihydrones.com"http://dihydrones.com and look at the links near the top of the page, such as Main, MyPage and Store. Click onto the BlimpDuino link to see a description of the BlimpDuino as well as links to sources for buying the kit. The cost for the kit is approximately $89. The BlimpDuino Controller Board is also available without the rest of the kit for approximately $35.
Included on the BlimpDuino webpage are links to what else youll need, as well as instructions for making the kit, operating modes and using the BlimpDuino as well as instructions for making it from scratch.
Your BlimpDuino kit comes with most of what you need to complete the blimp, and all the hard-to-find and unique parts. Here's what else you'll need. This list can also be seen at HYPERLINK "http://diydrones.com/profiles/blogs/other-things-youll-need-to"http://diydrones.com/profiles/blogs/other-things-youll-need-to
A soldering iron and solder
A FTDI cable (DIY Drones cable recommended) to program the board.
Helium (Available in the balloon kits available for $18 at Target, or a larger tank from Amazon)
A 7.4v LiPo battery (any other one of that approximate size and capacity will do, as long as it's under about 35-40 grams)
A balancing charger (This one, with this power supply, will do the trick and is inexpensive)
If you want to use RC mode, you'll need an RC system with at least three channels. Any will work, starting with simple systems such as this one. You'll also need two female-to-female RC cables.
A 9v battery for the ground beacon
Double-stick tape to attach the board to the gondola
Velcro tape to attach the gondola to the envelope
Superglue
For step-by-step instructions about using linear regression with the TI-83 Plus and TI-84 graphing calculators go to the website HYPERLINK "http://www.calcblog.com/performing-a-linear-regression-on-the-ti-83-or-ti-84/" http://www.calcblog.com/performing-a-linear-regression-on-the-ti-83-or-ti-84/
Lesson OutlineMathematical Modeling Through Regression
(Payload vs. Top Speed)Time Estimate: 2.25 hours or three 45-minute class periodObjectivesUnderstand mathematical modeling/regression
Understand the significance of r and r2
Understand interpolation and extrapolation
Use a graphing calculator (TI-83 Plus or TI-84) to plot points and best fit lines
Calculate the equation of a line when given two points
Calculate average speed
Calculate equations of lines, slopes and y-intercept formMaterials & ResourcesHandout 1: Quiz 1
Handout 2: Procedure Notes for Mathematical Regression of Payload vs. Speed
Handout 2a: Instructions for Using Linear Regression with a Graphing Calculator
(Optional) Handout 3: Mathematical Regression Career Connection
Materials
BlimpDuino
Stop-watch
Measuring tape or meter-stick
10 small weights per team (100 grams each)
Paper (lined and graph)
Pencil
TI-83 Plus or TI-84 Calculator with a USB connection or access to Microsoft Excel
Computer/projector with the capability of showing the operation and results of the graphing calculator and with MS Excel
Websites
HYPERLINK "http://diydrones.com/profiles/blog/show?id=705844%3ABlogPost%3A44817"http://diydrones.com/profiles/blog/show?id=705844%3ABlogPost%3A44817
HYPERLINK "http://www.calcblog.com/performing-a-linear-regression-on-the-ti-83-or-ti-84/" http://www.calcblog.com/performing-a-linear-regression-on-the-ti-83-or-ti-84/ AgendaStepMinutesActivity110Handout 1 should be distributed as homework the day before the activity. Teacher should already have the BlimpDuino assembled from previous modules in this set of modules.
Introduce objectives and go over Handout 1 with students. Cover the concept Math Regression of Payload vs. Speed with students.210Give Handout 2 to students. Go over procedure covered for collecting data. 35Make team selections.420Have students begin data collection.530Use Optional Handout 2a or the website given above as you guide students through the procedure.
Go to the website regarding the linear regression feature of the graphing calculators. The students will next develop a linear model using their graphing calculators, (See the instructions at the website below)
HYPERLINK "http://www.calcblog.com/performing-a-linear-regression-on-the-ti-83-or-ti-84/" http://www.calcblog.com/performing-a-linear-regression-on-the-ti-83-or-ti-84/ 615Students work in class to develop a linear model using graphing calculators.720Analysis of results. Cover the analysis of the results with students. Explain the statistical significance of r2 and r of the best fit line developed. Explain interpolation and extrapolation. Give a few reasons why experiment results and analytical results may vary.
830(Optional) Handout 3: Mathematical Regression Career Connection
Quiz 1
Given points A(2, 6) and B(8, 22) determine the equation of the line AB. If point C is on line AB and its x-coordinate is 6, then determine the y-coordinate of point C.
Quiz 1Teachers Guide
Calculate the slope of line AB: EMBED Equation.3
Use the point-slope formula:
EMBED Equation.3
If x = 6, then: EMBED Equation.3
Begin by going over Quiz 1 that was assigned as homework the day before. The students need to know how to calculate the equation of a line given two points or the slope and y-intercept.
Procedure Notes for Mathematical Regression of
Payload vs. Speed
Objective: The students will develop a linear mathematical regression to model the relationship between the payload and top speed of a UAV (blimp).
Time for activity: Three 45-minute class periods
Materials needed:
BlimpDuino
Stopwatch
Tape measure
10 small weights per team (100-grams each)
Paper (lined and graph)
Pencils
TI-83 Plus or TI-84 with a USB connection or access to Microsoft Excel
Computer/projector with the capability to show the operation and results of the graphing calculator
Procedure
Students will work in teams of two or three.
Research the data provided with the blimp to ascertain the maximum payload capacity of the blimp using the website below:
HYPERLINK "http://diydrones.com/profiles/blog/show?id=705844%3ABlogPost%3A44817"http://diydrones.com/profiles/blog/show?id=705844%3ABlogPost%3A44817
Divide the payload capacity into increments of 100 grams.
Record the time it takes the blimp to travel 25 feet without a payload.
Calculate the average speed using Speed = Distance / Time
Calculate and record the average speed of the blimp at each of the calculated payloads using the same method outlined in steps 4 and 5.
Plot the data points on a graph paper where the x-axis is the payload in grams and the y-axis is the average speed in ft/sec.
Draw a straight line that you think best represents the data points graphed.
Determine the equation of the best fit line in the slope y-intercept form; y = mx + b; this is the linear model representing the relationship between the payload of the blimp and its speed.
Instructions for Using Linear Regression
with a Graphing Calculator
Using the linear regression feature of a graphing calculator, develop a linear model using a graphing calculator.
Optional: See the instructions at the website below:
HYPERLINK "http://www.calcblog.com/performing-a-linear-regression-on-the-ti-83-or-ti-84/" http://www.calcblog.com/performing-a-linear-regression-on-the-ti-83-or-ti-84/
Use the Stat Edit feature to enter the data into two lists (L1, L2). Choose L1 as your payload weights from 0 to 1000 grams in increments of 100 (0, 100, 200 1000). Choose L2 as the average speed calculated with that payload.
Find the best fit line by using the Stat Calc feature.
Use the Stat Plot feature to make a scatter plot of the data points.
Graph the regression equation in a correct window setting. You should see the scatter plot with the best fit line.
(Optional)
Handout 3: Mathematical Regression Career Connection
Mathematical Regression is used quite a bit in various different careers in the transportation field. One such career would be working for a department of transportation (DOT) and developing a replacement schedule for LED traffic Lights. DOTs have been struggling adjusting their light replacement schedule as LED traffic lights are replacing incandescent traffic lights. The two main reasons for this struggle are due to the differences in useful life and failure method. Incandescent lights had a shorter useful life ending with the light burning out completely, which made the failure of the light easy to see. Comparatively, LED lights have a much longer useful life and fail slowly over time. As LED lights fail their light output, or Luminous Intensity (LI), decreases. An LED light should be replaced before their LI falls below a certain point. Below that point the LED light doesnt have enough output and starts to be a safety risk, even if to the naked eye the light looks functional. Currently, the majority of DOTs are reactive in replacing LED traffic lights.
Suppose that you have recently been hired by your state DOT. Your first responsibility is to set-up a replacement schedule for LED traffic lights. By creating a replacement schedule, you will be helping your DOT to become proactive in their LED replacement strategy. This should minimize the total amount of time that traffic lights operate with LEDs that are no longer safe.
In preparation for your task, the DOT has collected LI data from current green LED traffic lights in use now. The LI is measured in candela (cd). For these green LED traffic lights you are informed that 200 cd is the minimum safe LI. Each data point also has the approximate time since it was installed. Use this data to determine (via mathematical regression) an approximate length of time that the LEDs should be used in the field before they are replaced. Be sure to consider all appropriate types of regression that might fit the situation. If there are significant outliers, identify them and perform the regression without them.
You are to report your recommendation in a memo to your boss. Be sure to also include all relevant details as well, such as which type of regression model you used and why.
LED Field Data:
Minimum safe LI: 200 cd
Years since InstalledCandella (cd)23004.53005260618015251.55005.53006.53506400680855095001135012503120420052005300910041755.51502.522014253.52352190
Teachers Guide:
Background:
This is a real life problem that State DOTs are currently working to address. A study done in 2010 show that 70% of DOTs are reactive in their replacement strategies. This problem was based on a recent thesis that was performed to determine a rough replacement schedule of LED traffic lights. Such analysis from mathematical regression is very common in helping create various replacement schedules. From that thesis, circular green LED traffic lights had a useful life of between 4 and 8 years depending on the manufacturer. The minimum LI threshold of circular green LED lights was set at 257 cd. In developing this problem, I lowered the LI threshold to 200 cd in order for the made up data to seem more realistic.
Solution:
In working through this problem, three outliers were identified. These are (8,550), (9,500), and (11,350). There are many possible reasons for such outliers to exist. There might be an error in collecting the data or maybe the green LED traffic light isnt used as often as others. One example of the uneven green LED traffic light usage would be if the traffic signal were in a place where it would be placed on flashing red during the night.
After identifying the outliers, it is relatively simple to perform mathematical regression on the remaining data points to determine a replacement schedule. There are several possible regressions that might fit this set of data, but unless you want your students to calculate r2 for the variance that can be explained by the regression, your students might choose different regression models for their answers.
If you dont have your students calculate r2, the three of the best fitting regressions are linear, exponential, and power. Choosing which model and the explanation of why the student chose the regression is a tad harder in this case. Without r2 values and confidence intervals, the students will have to rely more on how it seems to fit with the given data points. The equations as well as the replacement time frames for these models are given on the next page. All three regression models suggest replacement between 4-7 years, which matches with real life analysis, but the students will not get the most out of this modeling. However, if the students do perform the r2 analysis they will see that the exponential regression has the highest r2 value. Therefore exponential should be the correct answer.
Teachers Guide (Con):
Regression Models:
Linear Regression:
Y= 383.958-28.727(X)
Replace= 6.4 years
R2=0.339
Exponential Regression:
Y= 436.179(0.8596)X
Replace= 5.15 years
R2=0.448 (best fit)
Power Regression:
Y= 465.006(X)-0.5633
Replace=4.47 years
R2=0.389
Teacher
Assessment Material
Final Evaluation Criteria
Students will be assessed on this problem-based dynamics study on the following criteria:
Calculate speed over a fixed distance using r=d/t
Plot data points (payload vs. top speed) by hand
Plot data points (payload vs. top speed) using a graphing calculator
Find the best fit line using an approximation (by hand) and a graphing calculator
Find non-linear models (quadratic, exponential) to represent the data
Discuss the accuracy of the models based on r and r2
Find expected speed calculation of a point through interpolation and extrapolation
Accuracy of (speed) calculations analytically vs. experimentally
Conclusion of results
Quiz 2
Use the best-fit line approximation you developed with your graphing calculators to estimate the expected speed at a payload of 250 grams.
Experimentally determine the average speed with a payload of 250 grams.
What is the percent error of your estimate?
What are some of the reasons for the difference between the experimental and calculated results?
Quiz 2 Teachers Guide
Use interpolation; plug 250 for the x-value of the equation the students calculated as the best-fit line to find the y-value that is the speed.
EMBED Equation.3
Final Evaluation Scoring Guide or Rubric
Grading Score Sheet for UAV/BlimpDuino: Mathematical RegressionStudent or Student Group Name: Element or Criteria:Total Points ScoredTotal Possible1. Quiz 1.102. Data points collected with calculations shown on separate sheet.153. Scatter plot of data (by hand) with the approximate best-fit line.154. Equation of the approximate best-fit line.155. Scatter plot of data and best fit line given by the graphing calculator along with the equation of the best-fit line generated by the calculator.15Quiz 2.30
Total Score ____ of 100
TO 403-115
UAV/BlimpDuino Study: Mathematical Regression
PAGE \* MERGEFORMAT 21
Handout 1, A Study of Mathematics Regression Module
Handout 1, Teachers Guide for A Study of Mathematics Regression Module
Handout 2, A Study of Mathematics Regression Module
Handout 2a, Teachers Guide for A Study of Mathematics Regression Module
Optional Handout 3, A Study of Mathematics Regression Module
Optional Handout 3: Mathematical Regression Career Connection
Optional Handout 3: Teachers Guide for Mathematical Regression Career Connection
Teachers Guide for Optional Handout 3: Mathematical Regression Career Connection
-.1AFGaxyzʼ㮣whVG*B*phTh3hc>*B*phT!h3hc0JB*OJQJphThc>*B*phT!h,hc0JB*OJQJphThcjhcUh>hc6OJQJhc6OJQJh3[hcOJQJhc5OJQJhcCJOJQJaJhDhc5CJOJQJaJhKpFhcOJQJ $E]&
7
gdc
$h^hgdc$`^``gdc
$^gdc
@&`gdc$gdc
$`gdc$$^`gdc
.3ȼȯӝ}m^RGUhc5OJQJh<hcCJOJQJaJh<hc5CJOJQJaJhKpFhcOJQJhc5OJQJhcCJ OJQJaJ #h
Thc5CJOJQJ^JaJhc6CJ$OJQJaJ$h>Uhc6OJQJh>UhcOJQJhcOJQJhc6OJQJhc5OJQJ#h3hc6>*B*OJQJphT
.HI
$`gdc
$^gdc$$^`gdc^`gdc dh@&gdc$a$gdcgdcHI_b 35KM`bsu"=>?tuyb:ƺƺբ hMhcCJOJQJ^JaJh3[hc5OJQJ\^JhcOJQJhcB*OJQJphh3[hcB*OJQJphhc5OJQJh>Uhc5OJQJh>UhcOJQJh3[hcOJQJ6>?uyb%{
&F 7$8$H$gdc$$
&F gdc
7$8$H$`gdc
&F
887$8$H$^8gdc
#7$8$H$`#gdc
&F7$8$H$gdc
7$8$H$`gdc$$h^hgdc$$^`gdc$gdc%u:R$$^`gdc$$gdc
&Fgd:gdc
&F7$8$H$gdc
7$8$H$^gdc
&F7$8$H$gdc
7$8$H$`gdc$$
&F gdc
&F 7$8$H$gdc:QRúobZNE:hchcOJQJhc5OJQJhk-khc5OJQJh:OJQJh:5CJOJQJaJ#h|kh:CJOJQJ\^JaJh:CJOJQJ\^JaJ#hh:CJOJQJ\^JaJh:hc5OJQJh:h:5OJQJh:5OJQJhMhcCJOJQJaJ hMhcCJOJQJ^JaJh3[hc5OJQJ\^Jhc5OJQJ\^J_`g129OP]ƻլլլՕymXC)hMhcB*CJOJQJ^JaJph--,)hMhcB*
CJOJQJ^JaJphhh5 bhc6OJQJhc6OJQJhchcOJQJhcOJQJ,hzhc6B*CJOJQJ^JaJph--,hzhcCJOJQJaJh.-hcOJQJh.-hcCJOJQJaJ)hzhcB*CJOJQJ^JaJph--,)hzhcB*
CJOJQJ^JaJphh`2P$$Ifa$gdo$$^`gdc$gdcgdc$$
&Fgdc$$`gdc$$gdc1
&Fgdc$$
&Fgdc
./0JKL~~sesWGWse4s%h>Uhc5>*OJQJ\^JaJhqi1hcH*OJQJ\^Jhqi1hcOJQJ\^Jh4Uhch>UhcOJQJ\^JaJh>Uhc5OJQJ\^Jh>Uhc5OJQJhcOJQJh>UhcOJQJ)hMhcB*CJOJQJ^JaJph--,)hMhcB*
CJOJQJ^JaJphh"hMhc5>*CJOJQJaJ
$/Llreeeee\ee $Ifgdo
&F$Ifgdoxkd$$Ifl0,%0d&644
layto
&FP$If^`Pgdo
MNOPeo! " f g 2!3!4!!!!!!!!!""K$L$^$m$ȼ漟ttȼh!$hcOJQJhcH*OJQJhhcOJQJhqi1hcOJQJ\hcOJQJhcOJQJ\hMhcOJQJ\h>Uhc5OJQJhc5OJQJh>Uhchqi1hcOJQJ\^JhcOJQJ\^Jh4^*`>gdc
&F
8^gdc
Vgdc $
&Fgdcm$z$$$$$$$$%%5&6&?&f&v&w&&&'
'B'C'd'e'z'{'''('(((8)W)k)l)))Y*Z*****++++++4,<,C,T,--"-휸hPhcOJQJhOhcOJQJhOhc0JOJQJhcjhcUhZFhcOJQJhY{hcOJQJh2+hcOJQJh>Uhc5OJQJhcOJQJh>UhcOJQJ9)%T%l%t%%6&7&A&()*+C++,|,>-a----
&Fgdc
&Fdd[$\$gdc$
&Fdd[$\$gdc $
&Fgdc $
&Fgdc$gdc$
&F
(gdc"-<---W.X.d..../////// /
////Y/ǽǡǽՕ{k^L=hc5CJOJQJ^JaJ#h>Uhc5CJOJQJ^JaJhc5CJOJQJaJh>Uhc5CJOJQJaJh>UhcCJOJQJaJh>UhcOJQJh>Uhc5OJQJh09hP0JOJQJ^JhPhPOJQJ^JhPOJQJ^JjhPOJQJU^JhcOJQJ^Jh=hcOJQJhOhcOJQJhPhcOJQJ-///// /
//B/Z/
(($Ifgdogdc$gdc$$h^hgdc$$
&FgdP
Y/Z/[/k/////////////////0000001111112Ϳ洦zpeXph*:~hcOJQJ^Jh*:~hcOJQJhcOJQJ^Jh vhcOJQJ\^Jh4Uhc5OJQJ^Jh>Uhc#h0}hc5CJOJQJ^JaJ Z/[//_R
(($Ifgdokd$$IfTl0 ,
t0644
l`
awpytoT///}p
(($Ifgdokd$$IfTl,
t
0644
l`
awp
ytoT////"0u0000}hhhhhhh
&F
Va$If`agdokd$$IfTl,
t
0644
l`
awp
ytoT011y
(($IfgdoykdJ$$IfTl,
t0644
l`
awp
ytoT11)1u11222'2E2q2}hhhhh[[[[
&F$Ifgdo
&F
(($If^gdokd$$IfTl,
t
0644
l`
awp
ytoT
2222E2U2V2`2n2o22Z3[3c3d3h3i333334444^4`4a444444鸴雍qd]h>UhchkhcOJQJ^Jh09hP0JOJQJ^JhPhPOJQJ^JjhPOJQJU^JhPOJQJ^JhHhc0JOJQJ^JhcjhcUh4hcOJQJhY{hcOJQJhcOJQJhahcOJQJhcOJQJ^Jh4hcOJQJ^J q2222[3d3444Kykd$$IfTl,
t0644
l`
awp
ytoT
(($Ifgdo
&F$If^gdo$
&F($Ifgdo
&F$Ifgdo4444444444455555666 666)6Y6Z6[6]6^6_6t6u6v6w6x6{6666666 7777ܷܷzhPOJQJjhPOJQJUh%1hcOJQJhkhcOJQJhahcOJQJhcOJQJhcOJQJ^Jh>UhcOJQJ^Jh>Uhc56OJQJh>Uhch>Uhc56OJQJ^Jh>Uhc5OJQJ,444444p`$(($Ifa$gdokd@$$IfTl,
t
0644
l`
awp
ytoT
(($Ifgdo4444556VFF;;;
$$Ifgdo$(($Ifa$gdokd$$IfTlF ,S
t0644
l`
awpytoT66 66Z6VFF7$$If`gdo$(($Ifa$gdokd$$IfTlF ,S
t0644
l`
awpytoTZ6[6]6_6u6VFF9
(($Ifgdo$(($Ifa$gdokdz$$IfTlF ,S
t0644
l`
awpytoTu6v6x6{66VFF9
(($Ifgdo$(($Ifa$gdokdB$$IfTlF ,S
t0644
l`
awpytoT66667VFF7$$If`gdo$(($Ifa$gdokd
$$IfTlF ,S
t0644
l`
awpytoT77788:kd $$IfTlF ,S
t0644
l`
awpytoT$If^`gdP
$$Ifgdo77898:8888888888888888T9U9{9999999:::G:H:P:Q:;¸¸¸fVh{5hc5CJOJQJaJ1jhc5CJOJQJUaJmHnHtHuhc5CJOJQJaJhahcH*OJQJhahcOJQJhcOJQJh>UhcOJQJ^JhcOJQJ^Jh>UhchkhcOJQJh09hP0JOJQJjhPOJQJUhPOJQJhPhPOJQJ!88888889kd
$$IfTlF ,S
t0644
l`
awpytoT
(($Ifgdo$(($Ifa$gdo899996&$(($Ifa$gdokdb$$IfTlF ,S
t0644
l`
awpytoT
(($Ifgdo$\$If^\`gdo999:::;:<:944gdckd*$$IfTlF ,S
t0644
l`
awpytoT
(($Ifgdo$(($Ifa$gdo<:=:>:?:@:A:B:C:D:E:F:G:I:J:Q:R:::::;;;;;;;;; ;gdc ;
;;;
;;;;;;;;;;;;;;;;;; ;!;7;8;;;;;gdc;;!;8;q;r;s;;;;;;;;;;;;;;;ۿuj]jK:u!jhUKHhcEHOJQJU#jU
hUKHhcOJQJUVhUKHhcEHOJQJhUKHhcOJQJjhUKHhcOJQJU!jhhcEHOJQJU#jU
hhcOJQJUVhhcEHOJQJhhcOJQJjhhcOJQJUhc5CJOJQJaJhcOJQJ7jhuhc5CJOJQJUaJmHnHtHu;;;;;;;;;;;;<<<==>??????Եߙxh\SKGKhcjhcUhc>*OJQJhehc>*OJQJh^hc5CJOJQJaJhc5CJOJQJaJ&jhcOJQJUmHnHtHuhUKHhcOJQJ!jhrhcEHOJQJU#jU
hrhcOJQJUVhrhcEHOJQJhrhcOJQJjhrhcOJQJUhcOJQJhc5OJQJ;;;;;<<<<<<<<<<<<<<<<<<<====$a$gdc$gdcgdc=======)>A>J>>>>?.??@@z@@@ABRBCC((^gdc $
&Fgdc $
&F
gdc$gdc?>@?@@@CC[C]CCCCCCD DDbDdDeDDDDDDDDEEEEF̛̛̛̳̓{sbQQ hhc6B*
OJQJph hhc6B*
OJQJphhPOJQJhch09hP0JhPhPhPjhPUhY2hcOJQJhc5CJOJQJaJ1jhc5CJOJQJUaJmHnHtHuhcOJQJ hhcCJOJQJ^JaJjhcU$hhc0JCJOJQJ^JaJCCCAC\C]CCCDDDDEEFFFFFFFFFFFFgdc
&Fgdc $
&Fgdc$gdc $$a$gdcFFFFFFFFFFFOOOOOOO P!P'P(P0P1P7P8P>P?PEPFPNPOPWPXP`PaPgPhPmPnPtPuP{P|PPPPPP̳̫̫̫̫|||||||||||||||hchcB*OJQJ^JphhoShcOJQJ"jhcOJQJUmHnHuhcOJQJ1jhc5CJOJQJUaJmHnHtHuhc5CJOJQJaJh vhc5OJQJh{5hc5CJOJQJaJhhcOJQJ0FFFFFFFFFFKLOOOOOOOP P$$1$7$8$H$Ifa$gdogdc$gdc P!P#P'P(P,P0PIQkd$$Ifl,0*>
H44
laNyto$$1$7$8$H$Ifa$gdoQkd]$$Ifl,0*>
H44
laNyto0P1P3P7P8P:P>PIQkd$$Ifl,0*>
H44
laNyto$$1$7$8$H$Ifa$gdoQkd$$Ifl,0*>
H44
laNyto>P?PAPEPFPJPNPIQkdK$$Ifl,0*>
H44
laNyto$$1$7$8$H$Ifa$gdoQkd$$Ifl,0*>
H44
laNytoNPOPSPWPXP\P`PIQkdw$$Ifl,0*>
H44
laNyto$$1$7$8$H$Ifa$gdoQkd$$Ifl,0*>
H44
laNyto`PaPcPgPhPjPmPIQkd$$Ifl,0*>
H44
laNyto$$1$7$8$H$Ifa$gdoQkd
$$Ifl,0*>
H44
laNytomPnPpPtPuPwP{PIQkd$$Ifl,0*>
H44
laNyto$$1$7$8$H$Ifa$gdoQkd9$$Ifl,0*>
H44
laNyto{P|PPPPPPIQkd$$Ifl,0*>
H44
laNyto$$1$7$8$H$Ifa$gdoQkde$$Ifl,0*>
H44
laNytoPPPPPPPIQkd'$$Ifl,0*>
H44
laNyto$$1$7$8$H$Ifa$gdoQkd$$Ifl,0*>
H44
laNytoPPPPPPPPPPPPPPPPPPPPPPPPPPPSSVVkWlWmWtWxW8X9XYY1Z2ZnZoZpZqZZĻ曦v3jhuhc5CJOJQJUaJmHnHuh/hcOJQJh@=hcOJQJhcH*OJQJh;hc>*OJQJhc>*OJQJhc5CJOJQJaJ(jhuhcOJQJUmHnHuhcOJQJhcB*OJQJ^Jphhc.PPPPPPPIQkdS$$Ifl,0*>
H44
laNyto$$1$7$8$H$Ifa$gdoQkd$$Ifl,0*>
H44
laNytoPPPPPPPIQkd $$Ifl,0*>
H44
laNyto$$1$7$8$H$Ifa$gdoQkd$$Ifl,0*>
H44
laNytoPPPPPPPIQkd!$$Ifl,0*>
H44
laNyto$$1$7$8$H$Ifa$gdoQkd!$$Ifl,0*>
H44
laNytoPPPPPPPIQkd"$$Ifl,0*>
H44
laNyto$$1$7$8$H$Ifa$gdoQkdA"$$Ifl,0*>
H44
laNytoPPPPPPPPIDDDgdcQkd$$$Ifl,0*>
H44
laNyto$$1$7$8$H$Ifa$gdoQkdm#$$Ifl,0*>
H44
laNytoPPSSSUAWoZqZZZZZZZZZZZZZ[#[8[9[K[L[
&Fgdc
&Fgdc`gdcgdcZZZZZZZ
[["[$[%[-[7[Y[`[s[u[v[|[}[[[[[[[[[[\ٰٰ͓ͣwkbVMVhcOJQJ\hMhcOJQJ\hc5OJQJh>Uhc5OJQJh>UhcCJOJQJaJhc5CJ4OJQJaJ4h| hc5CJ4OJQJaJ4hc6CJOJQJaJh[@VhcCJH*OJQJaJhcCJH*OJQJaJhcCJOJQJaJh[@VhcCJOJQJaJhc5CJOJQJaJh;hcOJQJL[a[t[}[[[[[[[[[[[[[[[[\M\~\\][]] $
&Fgdc$gdc$a$gdcgdc
&Fgdc\%\L\M\}\~\\\\\]]Z][]]]]]]#^$^9^:^;^E^F^_____\`]```a`¹s_&jhobhcB*OJQJUphhcB*OJQJph hrhc6B*OJQJphhcCJOJQJaJh{5hc5CJOJQJaJhc5CJOJQJaJhc5OJQJhMhcOJQJ\hcH*OJQJhhcOJQJhqi1hcOJQJ\hcOJQJhcOJQJ\"]]$^:^;^<^=^>^?^F^G^^^__I_J____________^`gdc $
&Fgdc^`_```w`x`y`z`{`|`}`~````````````````````gdca`b`r`s`t`u`v``````````aa*a2a3a4aGaHaVaWaXaȲ}ujZMZFjF}}}}Fh>Uhchc6CJOJQJaJh>Uhc6CJOJQJaJh>UhcOJQJhcOJQJh>Uhc5OJQJhc5OJQJhcCJOJQJaJ&jhobhcB*OJQJUph*j$hobhcB*EHOJQJUph,jU
hobhcB*OJQJUVph!hobhcB*EHOJQJphhobhcB*OJQJph``````ayxkdM'$$Ifl-$h%
t
044
lap
yto $Ifgdogdcaa4aHaWa$$Ifa$gdo $Ifgdohkd'$$Ifl$h%
t044
laytoWaXadaeahapg[[$$Ifa$gdo $IfgdokdX($$IflF$T
t044
laytoXaYa\adaeafahaiaaaaaaaaaaaaab$b.b/b1b2b3bbbbbbbbbbbbbbbbbc"c&c)c4c5cŵŵŵŵŵŵҮzhcOJQJh+ohcOJQJh>Uhc5OJQJhc5OJQJhcCJOJQJaJh>Uhch+ohc5CJOJQJaJhc5CJOJQJaJh>UhcCJOJQJaJh9hc6CJOJQJaJh9hcCJOJQJaJ0haiaaaari]]$$Ifa$gdo $Ifgdokd($$IflF$T
t044
laytoaaaaaMD88$$Ifa$gdo $Ifgdokd)$$IflF$T
t044
lapytoaa.b/b2bri]]$$Ifa$gdo $Ifgdokd_*$$IflF$T
t044
layto2b3bbbbMD88$$Ifa$gdo $Ifgdokd*$$IflF$T
t044
lapytobbbbbr\PP$$Ifa$gdo
&F
h$If`gdokd+$$IflF$T
t044
laytobbbMA$$Ifa$gdokdp,$$IflF$T
t044
lapytobbb5c6c(fkd-$$Ifl$h%
t044
layto $IfgdofkdW-$$Ifl$h%
t044
layto5c6c7c8c9c:cUhcOJQJh>Uhc+6c7c9c;cc?cAcBcDcEcPccccccccccccccc&d'dgdogdc'd(d\d]d^ddddddd+e,e-eeeeeeeeegdcddddddd*e+e-e~eeeeeeeeh>UhcOJQJh{hchcCJOJQJaJhcCJOJQJaJhc6&P1h:po/ =!"#$%0&P1h/ =!"#$%0&P1h/ =!"#$%6&P1h:po/ =!"#$%{$$If!vh#v#v:Vl0d&655yto$$If!vh#v#v:Vl0d&655yto$$Ifw!vh#v#v":Vl
t0655/`
awpytoT$$Ifw!vh#v+:Vl
t
065/`
awp
ytoT$$Ifw!vh#v+:Vl
t
065/`
awp
ytoT$$Ifw!vh#v+:Vl
t065`
awp
ytoT$$Ifw!vh#v+:Vl
t
065/`
awp
ytoT$$Ifw!vh#v+:Vl
t065/`
awp
ytoT$$Ifw!vh#v+:Vl
t
065`
awp
ytoT$$Ifw!vh#v#v#v":Vl
t065S55`
awpytoT$$Ifw!vh#v#v#v":Vl
t065S55`
awpytoT$$Ifw!vh#v#v#v":Vl
t065S55`
awpytoT$$Ifw!vh#v#v#v":Vl
t065S55`
awpytoT$$Ifw!vh#v#v#v":Vl
t065S55`
awpytoT$$Ifw!vh#v#v#v":Vl
t065S55`
awpytoT$$Ifw!vh#v#v#v":Vl
t065S55`
awpytoT$$Ifw!vh#v#v#v":Vl
t065S55`
awpytoT$$Ifw!vh#v#v#v":Vl
t065S55`
awpytoTDd
D
3A?"?29I(mdmc`|[a6
`!
I(mdmc`|[a`jTxSKq5 CӡCupP
2 NJFtptpO(2b76b>~}ޏ~p~!o0b/xzRU
M,ӯ{+pPFkyg}Ș斷*@9zo1.I>Zؼ~x#쭧ll,mc}jNC=?ؾȇK_Uj-x-MmWP-
vzgr
=+ӱp(1e$^Z7.K*osj!9g*Q^_@m X8ZX~TIj# -sܦ 48Vj]_AЉeJcN^.~qB-N(x)t
$:[CJѩ
M,[:wî6`]OHV
Dd
T
!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~Root Entry Fe.Data
;.WordDocumentObjectPool +e._1440940769F++Ole
CompObjfObjInfo
!"#$%&()*+,-./0123456789:;<=>?@ABCDEFGHIJKLN
FMicrosoft Equation 3.0DS EquationEquation.39q!¨kT
m=y2
"y1
x2
"x1
=22"68"2=83Equation Native _1440940770F++Ole
CompObj
f
FMicrosoft Equation 3.0DS EquationEquation.39q!¼x,
y"y1
=m(x"x1
)y"6=83(x"2)y=83x+23ObjInfo
Equation Native _1440940771F++Ole
FMicrosoft Equation 3.0DS EquationEquation.39q!`kT
y=83(6)+23=1623
FMicrosoft Equation 3.0DS EqCompObjfObjInfoEquation Native |_1440940772F++Ole
CompObjfObjInfoEquation Native IuationEquation.39q!-kT
%Error=Experimentalvalue"CalculatedvalueExperimentalvalue100D
3A?"?2u-rI
WY.WQ`!I-rI
WY.WF`
t\xT1hQ(X$* $z`
2H"!TVNB )#3o?of!D?0#D4U;ǝ^MPԛ,?C|>1fndK6PҟMn2gZ9J`4ɧU+kZQeg6ז$t+o'Nrm-_鋽I܌,74@^(,~]xAۊ/9},G?[⧡`gTO;Wsg#EgtaOdooo_ǜVExX E~c6cq~oR]$yڃ5)c_Q{{S3EX_~ԸeA<eܛN^3mx}wor/g_̬2N:Ԁ7:HtjXh8 ,5\
Y|A~Dd
lD
3A?"?2>բ߽FE`!>բ߽FE`3-9xR;KA.($i!(xaH%XhaRXI"$(x!^ge!)Lg "Bzu$9Qnogv;R-y`0PБztgY0d?uGjW U=9(5$tGh˔B[dksrxȽ&B.9~Fx6%7B|Zvm4j7&Y|owz-TMޑvC\V+XWZ%V+b74v%w~^uh>)~;߲jz_
&9O!YչSy9?sFyopm=@3PM ΕÍ>P,\v
|HG .Mv$$IfN!vh#vH#v:Vl,5H5/////aNyto$$IfN!vh#vH#v:Vl,5H5/////aNyto$$IfN!vh#vH#v:Vl,5H5/////aNyto$$IfN!vh#vH#v:Vl,5H5/////aNyto$$IfN!vh#vH#v:Vl,5H5/////aNyto$$IfN!vh#vH#v:Vl,5H5/////aNyto$$IfN!vh#vH#v:Vl,5H5/////aNyto$$IfN!vh#vH#v:Vl,5H5/////aNyto$$IfN!vh#vH#v:Vl,5H5/////aNyto$$IfN!vh#vH#v:Vl,5H5/////aNyto$$IfN!vh#vH#v:Vl,5H5/////aNyto$$IfN!vh#vH#v:Vl,5H5/////aNyto$$IfN!vh#vH#v:Vl,5H5/////aNyto$$IfN!vh#vH#v:Vl,5H5/////aNyto$$IfN!vh#vH#v:Vl,5H5/////aNyto$$IfN!vh#vH#v:Vl,5H5/////aNyto$$IfN!vh#vH#v:Vl,5H5/////aNyto$$IfN!vh#vH#v:Vl,5H5/////aNyto$$IfN!vh#vH#v:Vl,5H5/////aNyto$$IfN!vh#vH#v:Vl,5H5/////aNyto$$IfN!vh#vH#v:Vl,5H5/////aNyto$$IfN!vh#vH#v:Vl,5H5/////aNyto$$IfN!vh#vH#v:Vl,5H5/////aNyto$$IfN!vh#vH#v:Vl,5H5/////aNyto$$IfN!vh#vH#v:Vl,5H5/////aNyto$$IfN!vh#vH#v:Vl,5H5/////aNytoDd
D
3A?"?2yghie$`!yghie"̭5+xR=/Ca~ӢJA#$H0{q䶕T7scd`3:vCE$Bι*M{y|NwiIDlLQٴib]_ UD&fLX].'UY:47DLqh&F[xh)J#Hz#(C./CR;}υ?!y5kF19o+|Bdo3Hi5XI&
RY/aΛxH{>E@v
wnH&&Ozrm+*
?}nn.uCTA
{аc[QVVT:&slc^Z\z8-NJl,+oy˞iI谵;q
E(,&d`am!=GMkBf
|u^h$$If!vh#vh%:Vl-
t
05h%p
ytot$$If!vh#vh%:Vl
t05h%yto$$If!vh#v#vT#v:Vl
t055T5yto$$If!vh#v#vT#v:Vl
t055T5/yto$$If!vh#v#vT#v:Vl
t055T5pyto$$If!vh#v#vT#v:Vl
t055T5/yto$$If!vh#v#vT#v:Vl
t055T5pyto$$If!vh#v#vT#v:Vl
t055T5/yto$$If!vh#v#vT#v:Vl
t055T5/pytop$$If!vh#vh%:Vl
t05h%ytop$$If!vh#vh%:Vl
t05h%yto1Table~SummaryInformation( DocumentSummaryInformation8'| CompObjMrOh+'0T
(4<DLSandyNormal191963Microsoft Office Word@G@@
M՜.+,D՜.+,,hp|
.[TitleP 8@_PID_HLINKSAH*Nhttp://www.calcblog.com/performing-a-linear-regression-on-the-ti-83-or-ti-84/BM'Ehttp://diydrones.com/profiles/blog/show?id=705844%3ABlogPost%3A44817Nhttp://www.calcblog.com/performing-a-linear-regression-on-the-ti-83-or-ti-84/Nhttp://www.calcblog.com/performing-a-linear-regression-on-the-ti-83-or-ti-84/BMEhttp://diydrones.com/profiles/blog/show?id=705844%3ABlogPost%3A44817Nhttp://www.calcblog.com/performing-a-linear-regression-on-the-ti-83-or-ti-84/l/?http://diydrones.com/profiles/blogs/other-things-youll-need-tox'http://dihydrones.com/BM Ehttp://diydrones.com/profiles/blog/show?id=705844%3ABlogPost%3A448179%mailto:awaldenville@mntechnology.com<
mailto:jutley@francistuttle.eduJa"mailto:Ckoutahi@francistuttle.edu
F Microsoft Word 97-2003 Document
MSWordDocWord.Document.89q
2s666666666vvvvvvvvv66666666666666666666666666666666666666666666666hH6666666666666666666666666666666666666666666666666666666666666662 0@P`p2( 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p8XV~ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@ OJPJQJ_HmH nH sH tH L`LcNormal$CJOJPJQJ_HaJmH sH tH DDc Heading 1$
&F@&CJHaJ\\c Heading 2$
&F<@&56CJ,\]^JaJL@Lc Heading 3$
&F@&5OJQJaJRRc Heading 4$
&F<@&5CJ\aJDA D
Default Paragraph FontRi@R0Table Normal4
l4a(k (
0No ListL/LcHeading 1 CharCJHOJPJQJ^JaJX/XcHeading 2 Char$56CJ,OJPJQJ\]^JaJP/PcHeading 3 Char5CJOJPJQJ^JaJR/!RcHeading 4 Char5CJOJPJQJ\^JaJ3c
Table Grid7:V0dCJOJPJQJ^JaJ6U`A6c Hyperlink>*B*phVRVcPrimary Heading TOC
xx5CJ$aJ\b\cPrimary Heading NO TOC
xx5CJ$aJ@@r@c0Header
!OJQJaJF/Fc0Header CharCJOJPJQJ^JaJ@ @@c0Footer
!OJQJaJF/Fc0Footer CharCJOJPJQJ^JaJ:) :cPage NumberCJOJQJNQNcSecondary Heading TOC<CJ@"@cCaption$@&a$5CJ$aJJ0JcList Bullet
hh^h`ZYZ cDocument Map-D M
CJOJQJ^JaJd/dcDocument Map Char)CJOJPJQJ^JaJfH q
>>"c
Footnote Text!CJaJT/!T!cFootnote Text CharCJOJPJQJ^JaJ@& 1@cFootnote ReferenceH*FV AFcFollowedHyperlink>*B*pheR&cHTML Preformatted7%
2(
Px4 #\'*.25@9CJOJ QJ ^J aJ\/a\%cHTML Preformatted CharCJOJ PJQJ ^J aJHrH(cBalloon Text'CJOJQJ^JaJR/R'cBalloon Text CharCJOJPJQJ^JaJ8/8c
Current List1)F::c Cell Body
*<<aJDDcCell Heading+<5CJaJ:Q:-cBody Text 3,5aJT/T,cBody Text 3 Char5CJOJPJQJ^JaJ.(.cLine NumberttcColorful List - Accent 11/d^m$CJOJQJaJb/bcDefault07$8$H$-B*CJOJPJQJ_HaJmH phsH tH H`Hc
No Spacing1CJ_HaJmH sH tH PK![Content_Types].xmlN0EH-J@%ǎǢ|ș$زULTB l,3;rØJB+$G]7O٭VvnB`2ǃ,!"E3p#9GQd; H
xuv 0F[,F᚜KsO'3w#vfSVbsؠyX p5veuw 1z@ l,i!b
IjZ2|9L$Z15xl.(zm${d:\@'23ln$^-@^i?D&|#td!6lġB"&63yy@t!HjpU*yeXry3~{s:FXI
O5Y[Y!}S˪.7bd|n]671.
tn/w/+[t6}PsںsL.J;̊iN $AI)t2Lmx:(}\-i*xQCJuWl'QyI@ھ
m2DBAR4 w¢naQ`ԲɁ
W=0#xBdT/.3-F>bYL%˓KK6HhfPQ=h)GBms]_Ԡ'CZѨys
v@c])h7Jهic?FS.NP$
e&\Ӏ+I "'%QÕ@c![paAV.9Hd<ӮHVX*%A{YrAբpxSL9":3U5U
NC(p%u@;[d`4)]t#9M4W=P5*f̰lk<_X-CwT%Ժ}B% Y,]
A̠&oʰŨ;\lc`|,bUvPK!
ѐ'theme/theme/_rels/themeManager.xml.relsM
0wooӺ&݈Э5
6?$Q
,.aic21h:qm@RN;d`o7gK(M&$R(.1r'JЊT8V"AȻHu}|$b{P8g/]QAsم(#L[PK-![Content_Types].xmlPK-!֧60_rels/.relsPK-!kytheme/theme/themeManager.xmlPK-!R%theme/theme/theme1.xmlPK-!
ѐ' theme/theme/_rels/themeManager.xml.relsPK]
6B,] 6B,/
']8j iiiikkkkkkmmmmmmooooor
:m$"-Y/247;;?FPZ\a`Xa5cde3579;>?ACFHJPRZ`adfpwy|" % )%-Z///01q2446Z6u667889<: ;;=CF P0P>PNP`PmP{PPPPPPPPL[]^``aWahaaa2bbbb6c'de468:<=@BDEGIKLMNOQSTUVWXY[\]^_bceghijklmnoqrstuvxz{}~]7hvBdzY"""W&&'h+++,`,,/900q33333333377>8<d<<`XsXuX]XXXXXXXXXX:::XX:Jber!8
@` (
\
3"?
\
3"?
\
3"?
\
3"?
3@.@mmRTRTm3"?
3@.@mmRTRTm3"?
3@.@mmRTRTm3"?
\
3"?
B
S ?G234;>GHoR]W.K$~t[ t$tn#t 8$t|$l=$@M#
_Hlt514324422+]@+]MW
[e t ~ f!p!!!##**@-J-55HHXX9[;[<[>[?[A[B[D[E[T[^[[[]]
_2a2A;E;WW9[;[<[>[?[A[B[D[E[[[]333fq
############4$4$<$<$C$C$T$T$%%%%"%"%<%<%W&',,/0<<8[9[;[<[>[?[A[B[D[E[P[[[[[]8bڊ+^j@a<AlNPq5B+UzDt#Aa:,Cz0q0#
%6:8'R46X*# +f
h`29!;rTcq=Xc>f Dz/@Z][ZC$h
InO$O+R8xR"bD k=pvhrF\frZ:|;-6ү^`OJQJo(8^8`OJQJo(^`OJ QJ o(o p^ `OJ
QJ
o(@^`OJ
QJ
o(x^x`OJQJo(H^H`OJ QJ o(o^`OJ
QJ
o(^`OJ
QJ
o(hh^h`OJQJo(^`OJQJo(^`OJ QJ o(op^p`OJ
QJ
o(@^@`OJQJo(^`OJ QJ o(o^`OJ
QJ
o(^`OJQJo(^`OJ QJ o(oP^P`OJ
QJ
o(^`o(.^`^J.pLp^p`L^J.@@^@`^J.^`^J.L^`L^J.^`^J.^`^J.PLP^P`L^J.8^8`OJQJo(^`OJ QJ o(o ^ `OJ
QJ
o(^`OJQJo(x^x`OJ QJ o(oH^H`OJ
QJ
o(^`OJQJo(^`OJ QJ o(o^`OJ
QJ
o(h^h`5B*CJOJQJaJph8^8`CJOJQJ.pLp^p`L.@@^@`.^`.L^`L.^`.^`.PLP^P`L.88^8`OJQJo(^`OJ QJ ^J o(o ^ `OJ
QJ
o(^`OJQJo(xx^x`OJ QJ ^J o(oHH^H`OJ
QJ
o(^`OJQJo(^`OJ QJ ^J o(o^`OJ
QJ
o(^`OJQJo(^`OJ QJ o(opp^p`OJ
QJ
o(@@^@`OJQJo(^`OJ QJ o(o^`OJ
QJ
o(^`OJQJo(^`OJ QJ o(oPP^P`OJ
QJ
o(^`.^`.pL^p`L.@^@`.^`.L^`L.^`.^`.PL^P`L.^`OJQJo(^`OJ QJ ^J o(opp^p`OJ
QJ
o(@@^@`OJQJo(^`OJ QJ ^J o(o^`OJ
QJ
o(^`OJQJo(^`OJ QJ ^J o(oPP^P`OJ
QJ
o(h88^8`OJQJo(hH^`OJ QJ o(o ^ `OJ
QJ
o(^`OJQJo(xx^x`OJ QJ o(oHH^H`OJ
QJ
o(^`OJQJo(^`OJ QJ o(o^`OJ
QJ
o(^`OJQJo(^`OJ QJ ^J o(opp^p`OJ
QJ
o(@@^@`OJQJo(^`OJ QJ ^J o(o^`OJ
QJ
o(^`OJQJo(^`OJ QJ ^J o(oPP^P`OJ
QJ
o( ^`
Article . ^`Section .P^`P()`p`^``p()P^`P)P^`P)^`)P^`P.0p0^0`p.^`CJOJQJo(^`CJOJ QJ o(opp^p`CJOJ
QJ
o(@@^@`CJOJ
QJ
o(^`CJOJ
QJ
o(^`CJOJ
QJ
o(^`CJOJ
QJ
o(^`CJOJ
QJ
o(PP^P`CJOJ
QJ
o(^`OJQJo(^`OJ QJ o(op^p`OJ
QJ
o(@^@`OJQJo(^`OJ QJ o(o^`OJ
QJ
o(^`OJQJo(^`OJ QJ o(oP^P`OJ
QJ
o(^`OJQJo(^`OJ QJ ^J o(opp^p`OJ
QJ
o(@@^@`OJQJo(^`OJ QJ ^J o(o^`OJ
QJ
o(^`OJQJo(^`OJ QJ ^J o(oPP^P`OJ
QJ
o(88^8`OJQJo(^`OJ QJ o(o ^ `OJ
QJ
o(^`OJQJo(xx^x`OJ QJ o(oHH^H`OJ
QJ
o(^`OJQJo(^`OJ QJ o(o^`OJ
QJ
o(^`OJQJo(^`^J.L^`L^J.e^e`^J.5^5`^J.L^`L^J.^`^J.^`^J.uL^u`L^J.^`OJQJo(^`OJ QJ ^J o(opp^p`OJ
QJ
o(@@^@`OJQJo(^`OJ QJ ^J o(o^`OJ
QJ
o(^`OJQJo(^`OJ QJ ^J o(oPP^P`OJ
QJ
o(^`o(.^`.pL^p`L.@^@`.^`.L^`L.^`.^`.PL^P`L.^`OJQJo(^`^J.L^`L^J.e^e`^J.5^5`^J.L^`L^J.^`^J.^`^J.uL^u`L^J.^`OJQJo(^`OJ QJ ^J o(op^p`OJ
QJ
o(@^@`OJQJo(^`OJ QJ ^J o(o^`OJ
QJ
o(^`OJQJo(^`OJ QJ ^J o(oP^P`OJ
QJ
o(^`OJQJo(^`OJ QJ o(op^p`OJ
QJ
o(@^@`OJQJo(^`OJ QJ o(o^`OJ
QJ
o(^`OJQJo(^`OJ QJ o(oP^P`OJ
QJ
o(88^8`OJQJo(^`OJ QJ o(o ^ `OJ
QJ
o(^`OJQJo(xx^x`OJ QJ o(oHH^H`OJ
QJ
o(^`OJQJo(^`OJ QJ o(o^`OJ
QJ
o(^`OJ QJ ^J o(o^`^J.L^`L^J.e^e`^J.5^5`^J.L^`L^J.^`^J.^`^J.uL^u`L^J.^`OJQJo(^`OJ QJ o(opp^p`OJ
QJ
o(@@^@`OJQJo(^`OJ QJ o(o^`OJ
QJ
o(^`OJQJo(^`OJ QJ o(oPP^P`OJ
QJ
o(h^`ho(.^`.pLp^p`L.@@^@`.^`.L^`L.^`.^`.PLP^P`L.8^8`OJQJo(^`OJ QJ ^J o(o ^ `OJ
QJ
o(^`OJQJo(x^x`OJ QJ ^J o(oH^H`OJ
QJ
o(^`OJQJo(^`OJ QJ ^J o(o^`OJ
QJ
o(^`OJQJo(^`OJ QJ ^J o(opp^p`OJ
QJ
o(@@^@`OJQJo(^`OJ QJ ^J o(o^`OJ
QJ
o(^`OJQJo(^`OJ QJ ^J o(oPP^P`OJ
QJ
o(B46X*r"b;- !; %cq=#Aq0#Ah
Iz/@zfr:8'[ZC,$O+c>k=p+R@a`2Pq:| h] oP&m:{ce9[;[@
]@UnknownG*Ax Times New Roman5Symbol3.*Cx ArialCNComic Sans MS5..[`)Tahoma7.[ @Verdana;.*Cx Helvetica7.@CalibriA.Arial Narrow?= *Cx Courier New;WingdingsA$BCambria Math"1h.eg'
M.
uO/!0[6]2QHP $Pc2!xxSandy19196)